Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7986): 340-346, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853124

RESUMO

Understanding the effects of cash crop expansion on natural forest is of fundamental importance. However, for most crops there are no remotely sensed global maps1, and global deforestation impacts are estimated using models and extrapolations. Natural rubber is an example of a principal commodity for which deforestation impacts have been highly uncertain, with estimates differing more than fivefold1-4. Here we harnessed Earth observation satellite data and cloud computing5 to produce high-resolution maps of rubber (10 m pixel size) and associated deforestation (30 m pixel size) for Southeast Asia. Our maps indicate that rubber-related forest loss has been substantially underestimated in policy, by the public and in recent reports6-8. Our direct remotely sensed observations show that deforestation for rubber is at least twofold to threefold higher than suggested by figures now widely used for setting policy4. With more than 4 million hectares of forest loss for rubber since 1993 (at least 2 million hectares since 2000) and more than 1 million hectares of rubber plantations established in Key Biodiversity Areas, the effects of rubber on biodiversity and ecosystem services in Southeast Asia could be extensive. Thus, rubber deserves more attention in domestic policy, within trade agreements and in incoming due-diligence legislation.


Assuntos
Conservação dos Recursos Naturais , Florestas , Mapeamento Geográfico , Borracha , Imagens de Satélites , Sudeste Asiático , Biodiversidade , Computação em Nuvem , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências
2.
J Environ Manage ; 346: 118884, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37729834

RESUMO

Land degradation directly affects around 25% of land globally, undermining progress on most of the UN Sustainable Development Goals (SDG), particularly target 15.3. To assess land degradation, SDG indicator 15.3.1 combines sub-indicators of productivity, soil carbon and land cover. Over 100 countries have set Land Degradation Neutrality (LDN) targets. Here, we demonstrate application of the indicator for a well-established agricultural landscape using the case study of Great Britain. We explore detection of degradation in such landscapes by: 1) transparently evaluating land cover transitions; 2) comparing assessments using global and national data; 3) identifying misleading trends; and 4) including extra sub-indicators for additional forms of degradation. Our results demonstrate significant impacts on the indicator both from the land cover transition evaluation and choice or availability of data. Critically, we identify a misleading improvement trend due to a trade-off between improvement detected by the productivity sub-indicator, and 30-year soil carbon loss trends in croplands (11% from 1978 to 2007). This carbon loss trend would not be identified without additional data from Countryside Survey (CS). Thus, without incorporating field survey data we risk overlooking the degradation of regulating and supporting ecosystem services (linked to soil carbon), in favour of signals from improving provisioning services (productivity sub-indicator). Relative importance of these services will vary between socioeconomic contexts. Including extra sub-indicators for erosion or critical load exceedance, as additional forms of degradation, produced a switch from net area improving (9%) to net area degraded (58%). CS data also identified additional degradation for soil health, including 44% arable soils exceeding bulk density thresholds and 35% of CS squares exceeding contamination thresholds for metals.


Assuntos
Agricultura , Ecossistema , Solo , Desenvolvimento Sustentável , Carbono , Conservação dos Recursos Naturais
3.
Reg Environ Change ; 21(1): 1, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33362432

RESUMO

The Indonesian government committed to restoring over 2 million ha of degraded peatland by the end of 2020, mainly to reduce peat fires and greenhouse gas emissions. Although it is unlikely the government will meet this target, restoration projects are still underway. One restoration strategy involves blocking peatland drainage canals, but the consequences of this for smallholder farmers whose livelihoods are dependent on agriculture are unclear. This paper investigates perceived impacts of canal blocks on smallholder farmers and identifies factors that affect their willingness to accept canal blocks on their land. We use data from 181 household questionnaires collected in 2018 across three villages in Jambi province, Sumatra. We found that the majority of respondents would accept canal blocks on their farms, perceiving that the blocks would have no impact on yields or farm access, and would decrease fire risk. Respondents who would not accept blocks on their farms were more likely to use canals to access their farms and perceive that canal blocks would decrease yields. The majority of farmers unwilling to accept canal blocks did not change their mind when provided with an option of a block that would allow boat travel. Our results improve understanding of why some smallholders may be unwilling to engage with peatland restoration. Further research is needed to understand the impact of canal blocks on smallholders' yields. Engaging with stakeholders from the outset to understand farmers' concerns, and perceptions is key if the government is to succeed in meeting its peatland restoration target and to ensure that the costs and benefits of restoration are evenly shared between local stakeholders and other actors. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10113-020-01737-z.

4.
Nat Commun ; 9(1): 911, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500360

RESUMO

Expansion of Hevea brasiliensis rubber plantations is a resurgent driver of deforestation, carbon emissions, and biodiversity loss in Southeast Asia. Southeast Asian rubber extent is massive, equivalent to 67% of oil palm, with rapid further expansion predicted. Results-based carbon finance could dis-incentivise forest conversion to rubber, but efficacy will be limited unless payments match, or at least approach, the costs of avoided deforestation. These include opportunity costs (timber and rubber profits), plus carbon finance scheme setup (transaction) and implementation costs. Using comprehensive Cambodian forest data, exploring scenarios of selective logging and conversion, and assuming land-use choice is based on net present value, we find that carbon prices of $30-$51 per tCO2 are needed to break even against costs, higher than those currently paid on carbon markets or through carbon funds. To defend forests from rubber, either carbon prices must be increased, or other strategies are needed, such as corporate zero-deforestation pledges, and governmental regulation and enforcement of forest protection.

5.
PLoS One ; 10(8): e0135464, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26271042

RESUMO

Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world's most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1-2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù.


Assuntos
Bertholletia/crescimento & desenvolvimento , Florestas , Peru
6.
Ecol Evol ; 5(3): 531-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25691978

RESUMO

Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA